Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 164
Filtrar
1.
Obesity (Silver Spring) ; 32(2): 363-375, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38086776

RESUMO

OBJECTIVE: The aim of this study was to discover novel markers underlying the improvement of skeletal muscle metabolism after bariatric surgery. METHODS: Skeletal muscle transcriptome data of lean people and people with obesity, before and 1 year after bariatric surgery, were subjected to weighted gene co-expression network analysis (WGCNA) and least absolute shrinkage and selection operator (LASSO) regression. Results of LASSO were confirmed in a replication cohort. RESULTS: The expression levels of 440 genes differing between individuals with and without obesity were no longer different 1 year after surgery, indicating restoration. WGCNA clustered 116 genes with normalized expression in one major module, particularly correlating to weight loss and decreased plasma free fatty acids (FFA), 44 of which showed an obesity-related phenotype upon deletion in mice. Among the genes of the major module, 105 represented prominent markers for reduced FFA concentration, including 55 marker genes for decreased BMI in both the discovery and replication cohorts. CONCLUSIONS: Previously unknown gene networks and marker genes underlined the important role of FFA in restoring muscle gene expression after bariatric surgery and further suggest novel therapeutic targets for obesity.


Assuntos
Cirurgia Bariátrica , Transcriptoma , Humanos , Animais , Camundongos , Obesidade/genética , Obesidade/cirurgia , Obesidade/metabolismo , Músculo Esquelético/metabolismo , Redução de Peso/genética , Ácidos Graxos não Esterificados/metabolismo , Redes Reguladoras de Genes
2.
Int J Mol Sci ; 24(21)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37958657

RESUMO

MicroRNAs (miRNAs) recently emerged as means of communication between insulin-sensitive tissues to mediate diabetes development and progression, and as such they present a valuable proxy for epigenetic alterations associated with type 2 diabetes. In order to identify miRNA markers for the precursor of diabetes called prediabetes, we applied a translational approach encompassing analysis of human plasma samples, mouse tissues and an in vitro validation system. MiR-652-3p, miR-877-5p, miR-93-5p, miR-130a-3p, miR-152-3p and let-7i-5p were increased in plasma of women with impaired fasting glucose levels (IFG) compared to those with normal fasting glucose and normal glucose tolerance (NGT). Among these, let-7i-5p and miR-93-5p correlated with fasting blood glucose levels. Human data were then compared to miRNome data obtained from islets of Langerhans and adipose tissue of 10-week-old female New Zealand Obese mice, which differ in their degree of hyperglycemia and liver fat content. Similar to human plasma, let-7i-5p was increased in adipose tissue and islets of Langerhans of diabetes-prone mice. As predicted by the in silico analysis, overexpression of let-7i-5p in the rat ß-cell line INS-1 832/12 resulted in downregulation of insulin signaling pathway components (Insr, Rictor, Prkcb, Clock, Sos1 and Kcnma1). Taken together, our integrated approach highlighted let-7i-5p as a potential regulator of whole-body insulin sensitivity and a novel marker of prediabetes in women.


Assuntos
Diabetes Mellitus Tipo 2 , Insulinas , MicroRNAs , Estado Pré-Diabético , Humanos , Feminino , Camundongos , Ratos , Animais , MicroRNAs/metabolismo , Estado Pré-Diabético/genética , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/genética , Obesidade/complicações , Obesidade/genética , Glucose
3.
Artigo em Inglês | MEDLINE | ID: mdl-37988600

RESUMO

CONTEXT: Exercise training is known to improve glucose tolerance and reverse insulin resistance in persons with obesity. However, some individuals fail to improve or even decline in their clinical traits following exercise intervention. OBJECTIVE: This study focused on gene expression and DNA methylation signatures in skeletal muscle of low- (LRE) and high-responders (RES) to 8 weeks of supervised endurance training. METHODS: We performed skeletal muscle gene expression and DNA methylation analyses in LRE and RES before and after exercise intervention. Additionally, we applied the least absolute shrinkage and selection operator (LASSO) approach to identify predictive marker genes of exercise outcome. RESULTS: We show that the two groups differ markedly already before the intervention. RES were characterized by lower expression of genes involved in DNA replication and repair, and higher expression of extracellular matrix (ECM) components. LASSO approach identified several novel candidates (e.g. ZCWPW2, FOXRED1, STK40), which have not been previously described in the context of obesity and exercise response. Following the intervention, LRE reacted with expression changes of genes related to inflammation and apoptosis, RES with genes related to mitochondrial function. LRE exhibited significantly higher expression of ECM components compared to RES, suggesting improper remodeling and potential negative effects on insulin sensitivity. Between 45 and 70% of differences in gene expression could be linked to differences in DNA methylation. CONCLUSION: Together, our data offer an insight into molecular mechanisms underlying differences in response to exercise and provide potential novel markers for the success of intervention.

4.
Lancet Diabetes Endocrinol ; 11(11): 798-810, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37769677

RESUMO

BACKGROUND: Remission of type 2 diabetes can occur as a result of weight loss and is characterised by liver fat and pancreas fat reduction and recovered insulin secretion. In this analysis, we aimed to investigate the mechanisms of weight loss- induced remission in people with prediabetes. METHODS: In this prespecified post-hoc analysis, weight loss-induced resolution of prediabetes in the randomised, controlled, multicentre Prediabetes Lifestyle Intervention Study (PLIS) was assessed, and the results were validated against participants from the Diabetes Prevention Program (DPP) study. For PLIS, between March 1, 2012, and Aug 31, 2016, participants were recruited from eight clinical study centres (including seven university hospitals) in Germany and randomly assigned to receive either a control intervention, a standard lifestyle intervention (ie, DPP-based intervention), or an intensified lifestyle intervention for 12 months. For DPP, participants were recruited from 23 clinical study centres in the USA between July 31, 1996, and May 18, 1999, and randomly assigned to receive either a standard lifestyle intervention, metformin, or placebo. In both PLIS and DPP, only participants who were randomly assigned to receive lifestyle intervention or placebo and who lost at least 5% of their bodyweight were included in this analysis. Responders were defined as people who returned to normal fasting plasma glucose (FPG; <5·6 mmol/L), normal glucose tolerance (<7·8 mmol/L), and HbA1c less than 39 mmol/mol after 12 months of lifestyle intervention or placebo or control intervention. Non-responders were defined as people who had FPG, 2 h glucose, or HbA1c more than these thresholds. The main outcomes for this analysis were insulin sensitivity, insulin secretion, visceral adipose tissue (VAT), and intrahepatic lipid content (IHL) and were evaluated via linear mixed models. FINDINGS: Of 1160 participants recruited to PLIS, 298 (25·7%) had weight loss of 5% or more of their bodyweight at baseline. 128 (43%) of 298 participants were responders and 170 (57%) were non-responders. Responders were younger than non-responders (mean age 55·6 years [SD 9·9] vs 60·4 years [8·6]; p<0·0001). The DPP validation cohort included 683 participants who lost at least 5% of their bodyweight at baseline. Of these, 132 (19%) were responders and 551 (81%) were non-responders. In PLIS, BMI reduction was similar between responders and non-responders (responders mean at baseline 32·4 kg/m2 [SD 5·6] to mean at 12 months 29·0 kg/m2 [4·9] vs non-responders 32·1 kg/m2 [5·9] to 29·2 kg/m2 [5·4]; p=0·86). However, whole-body insulin sensitivity increased more in responders than in non-responders (mean at baseline 291 mL/[min × m2], SD 60 to mean at 12 months 378 mL/[min × m2], 56 vs 278 mL/[min × m2], 62, to 323 mL/[min × m2], 66; p<0·0001), whereas insulin secretion did not differ within groups over time or between groups (responders mean at baseline 175 pmol/mmol [SD 64] to mean at 12 months 163·7 pmol/mmol [60·6] vs non-responders 158·0 pmol/mmol [55·6] to 154·1 pmol/mmol [56·2]; p=0·46). IHL decreased in both groups, without a difference between groups (responders mean at baseline 10·1% [SD 8·7] to mean at 12 months 3·5% [3·9] vs non-responders 10·3% [8·1] to 4·2% [4·2]; p=0·34); however, VAT decreased more in responders than in non-responders (mean at baseline 6·2 L [SD 2·9] to mean at 12 months 4·1 L [2·3] vs 5·7 L [2·3] to 4·5 L [2·2]; p=0·0003). Responders had a 73% lower risk of developing type 2 diabetes than non-responders in the 2 years after the intervention ended. INTERPRETATION: By contrast to remission of type 2 diabetes, resolution of prediabetes was characterised by an improvement in insulin sensitivity and reduced VAT. Because return to normal glucose regulation (NGR) prevents development of type 2 diabetes, we propose the concept of remission of prediabetes in analogy to type 2 diabetes. We suggest that remission of prediabetes should be the primary therapeutic aim in individuals with prediabetes. FUNDING: German Federal Ministry for Education and Research via the German Center for Diabetes Research; the Ministry of Science, Research and the Arts Baden-Württemberg; the Helmholtz Association and Helmholtz Munich; the Cluster of Excellence Controlling Microbes to Fight Infections; and the German Research Foundation.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Estado Pré-Diabético , Humanos , Pessoa de Meia-Idade , Diabetes Mellitus Tipo 2/prevenção & controle , Redução de Peso , Peso Corporal , Glucose , Estilo de Vida
5.
Mol Metab ; 75: 101774, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37429525

RESUMO

OBJECTIVES: Better disease management can be achieved with earlier detection through robust, sensitive, and easily accessible biomarkers. The aim of the current study was to identify novel epigenetic biomarkers determining the risk of type 2 diabetes (T2D). METHODS: Livers of 10-week-old female New Zealand Obese (NZO) mice, slightly differing in their degree of hyperglycemia and liver fat content and thereby in their diabetes susceptibility were used for expression and methylation profiling. We screened for differences in hepatic expression and DNA methylation in diabetes-prone and -resistant mice, and verified a candidate (HAMP) in human livers and blood cells. Hamp expression was manipulated in primary hepatocytes and insulin-stimulated pAKT was detected. Luciferase reporter assays were conducted in a murine liver cell line to test the impact of DNA methylation on promoter activity. RESULTS: In livers of NZO mice, the overlap of methylome and transcriptome analyses revealed a potential transcriptional dysregulation of 12 hepatokines. The strongest effect with a 52% decreased expression in livers of diabetes-prone mice was detected for the Hamp gene, mediated by elevated DNA methylation of two CpG sites located in the promoter. Hamp encodes the iron-regulatory hormone hepcidin, which had a lower abundance in the livers of mice prone to developing diabetes. Suppression of Hamp reduces the levels of pAKT in insulin-treated hepatocytes. In liver biopsies of obese insulin-resistant women, HAMP expression was significantly downregulated along with increased DNA methylation of a homologous CpG site. In blood cells of incident T2D cases from the prospective EPIC-Potsdam cohort, higher DNA methylation of two CpG sites was related to increased risk of incident diabetes. CONCLUSIONS: We identified epigenetic changes in the HAMP gene which may be used as an early marker preceding T2D.


Assuntos
Diabetes Mellitus Tipo 2 , Hepcidinas , Humanos , Feminino , Camundongos , Animais , Hepcidinas/genética , Hepcidinas/metabolismo , Metilação de DNA , Diabetes Mellitus Tipo 2/metabolismo , Estudos Prospectivos , Insulina/metabolismo , Obesidade/genética , Biomarcadores/metabolismo , Células Sanguíneas/metabolismo
6.
Mol Metab ; 74: 101760, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37356805

RESUMO

OBJECTIVE: Medium chain fatty acids (MCFAs), which are fatty acids with chain lengths of 8-12 carbon atoms, have been shown to reduce food intake in rodents and humans, but the underlying mechanisms are unknown. Unlike most other fatty acids, MCFAs are absorbed from the intestine into the portal vein and enter first the liver. We thus hypothesized that MCFAs trigger the release of hepatic factors that reduce appetite. METHODS: The liver transcriptome in mice that were orally administered MCFAs as C8:0 triacylglycerol (TG) was analyzed. Circulating growth/differentiation factor 15 (GDF15), tissue Gdf15 mRNA and food intake were investigated after acute oral gavage of MCFAs as C8:0 or C10:0 TG in mice. Effects of acute and subchronic administration of MCFAs as C8:0 TG on food intake and body weight were determined in mice lacking either the receptor for GDF15, GDNF Family Receptor Alpha Like (GFRAL), or GDF15. RESULTS: Hepatic and small intestinal expression of Gdf15 and circulating GDF15 increased after ingestion of MCFAs, while intake of typical dietary long-chain fatty acids (LCFAs) had no effect. Plasma GDF15 levels also increased in the portal vein with MCFA intake, indicating that in addition to the liver, the small intestine contributes to the rise in circulating GDF15. Acute oral provision of MCFAs decreased food intake over 24 h compared with a LCFA-containing bolus, and this anorectic effect required the GDF15 receptor, GFRAL. Moreover, subchronic oral administration of MCFAs reduced body weight over 7 days, an effect that was blunted in mice lacking either GDF15 or GFRAL. CONCLUSIONS: We have identified ingestion of MCFAs as a novel nutritional approach that increases circulating GDF15 in mice and have revealed that the GDF15-GFRAL axis is required for the full anorectic effect of MCFAs.


Assuntos
Depressores do Apetite , Humanos , Camundongos , Animais , Depressores do Apetite/farmacologia , Fator Neurotrófico Derivado de Linhagem de Célula Glial/farmacologia , Peso Corporal , Ácidos Graxos/metabolismo , Dieta Hiperlipídica , Triglicerídeos , Ingestão de Alimentos , Fator 15 de Diferenciação de Crescimento/genética , Fator 15 de Diferenciação de Crescimento/metabolismo
7.
Int J Mol Sci ; 24(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36614300

RESUMO

Type 2 diabetes (T2D) represents a multifactorial metabolic disease with a strong genetic predisposition. Despite elaborate efforts in identifying the genetic variants determining individual susceptibility towards T2D, the majority of genetic factors driving disease development remain poorly understood. With the aim to identify novel T2D risk genes we previously generated an N2 outcross population using the two inbred mouse strains New Zealand obese (NZO) and C3HeB/FeJ (C3H). A linkage study performed in this population led to the identification of the novel T2D-associated quantitative trait locus (QTL) Nbg15 (NZO blood glucose on chromosome 15, Logarithm of odds (LOD) 6.6). In this study we used a combined approach of positional cloning, gene expression analyses and in silico predictions of DNA polymorphism on gene/protein function to dissect the genetic variants linking Nbg15 to the development of T2D. Moreover, we have generated congenic strains that associated the distal sublocus of Nbg15 to mechanisms altering pancreatic beta cell function. In this sublocus, Cbx6, Fam135b and Kdelr3 were nominated as potential causative genes associated with the Nbg15 driven effects. Moreover, a putative mutation in the Kdelr3 gene from NZO was identified, negatively influencing adaptive responses associated with pancreatic beta cell death and induction of endoplasmic reticulum stress. Importantly, knockdown of Kdelr3 in cultured Min6 beta cells altered insulin granules maturation and pro-insulin levels, pointing towards a crucial role of this gene in islets function and T2D susceptibility.


Assuntos
Diabetes Mellitus Tipo 2 , Predisposição Genética para Doença , Obesidade , Receptores de Peptídeos , Animais , Camundongos , Diabetes Mellitus Tipo 2/genética , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Camundongos Endogâmicos C3H , Camundongos Obesos , Obesidade/genética , Receptores de Peptídeos/genética
8.
Diabetes ; 72(3): 362-366, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36525512

RESUMO

The objective of this work was to investigate whether impaired insulin secretion can be restored by lifestyle intervention in specific subphenotypes of prediabetes. We assigned 1,045 participants from the Prediabetes Lifestyle Intervention Study (PLIS) to six recently established prediabetes clusters. Insulin secretion was assessed by a C-peptide-based index derived from oral glucose tolerance tests and modeled from three time points during a 1-year intervention. We also analyzed the change of glycemia, insulin sensitivity, and liver fat. All prediabetes high-risk clusters (cluster 3, 5, and 6) had improved glycemic traits during the lifestyle intervention, whereas insulin secretion only increased in clusters 3 and 5 (P < 0.001); however, high liver fat in cluster 5 was associated with a failure to improve insulin secretion (Pinteraction < 0.001). Thus, interventions to reduce liver fat have the potential to improve insulin secretion in a defined subgroup of prediabetes.


Assuntos
Resistência à Insulina , Estado Pré-Diabético , Humanos , Estado Pré-Diabético/metabolismo , Secreção de Insulina , Glicemia/metabolismo , Fígado/metabolismo , Estilo de Vida , Insulina/metabolismo
9.
Nat Immunol ; 24(1): 30-41, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36443515

RESUMO

Inflammasome complexes are pivotal in the innate immune response. The NLR family pyrin domain containing protein 3 (NLRP3) inflammasome is activated in response to a broad variety of cellular stressors. However, a primary and converging sensing mechanism by the NLRP3 receptor initiating inflammasome assembly remains ill defined. Here, we demonstrate that NLRP3 inflammasome activators primarily converge on disruption of endoplasmic reticulum-endosome membrane contact sites (EECS). This defect causes endosomal accumulation of phosphatidylinositol 4-phosphate (PI4P) and a consequent impairment of endosome-to-trans-Golgi network trafficking (ETT), necessary steps for endosomal recruitment of NLRP3 and subsequent inflammasome activation. Lowering endosomal PI4P levels prevents endosomal association of NLRP3 and inhibits inflammasome activation. Disruption of EECS or ETT is sufficient to enhance endosomal PI4P levels, to recruit NLRP3 to endosomes and to potentiate NLRP3 inflammasome activation. Mice with defects in ETT in the myeloid compartment are more susceptible to lipopolysaccharide-induced sepsis. Our study thus identifies a distinct cellular mechanism leading to endosomal NLRP3 recruitment and inflammasome activation.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Camundongos , Animais , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Imunidade Inata , Proteínas de Transporte/metabolismo , Endossomos/metabolismo
10.
Int J Mol Sci ; 23(19)2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36233162

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is characterized by excessive lipid accumulation in the liver. Various mechanisms such as an increased uptake in fatty acids or de novo synthesis contribute to the development of steatosis and progression to more severe stages. Furthermore, it has been shown that impaired lipophagy, the degradation of lipids by autophagic processes, contributes to NAFLD. Through an unbiased lipidome analysis of mouse livers in a genetic model of impaired lipophagy, we aimed to determine the resulting alterations in the lipidome. Observed changes overlap with those of the human disease. Overall, the entire lipid content and in particular the triacylglycerol concentration increased under conditions of impaired lipophagy. In addition, we detected a reduction in long-chain polyunsaturated fatty acids (PUFAs) and an increased ratio of n-6 PUFAs to n-3 PUFAs, which was due to the depletion of n-3 PUFAs. Although the abundance of major phospholipid classes was reduced, the ratio of phosphatidylcholines to phosphatidylethanolamines was not affected. In conclusion, this study demonstrates that impaired lipophagy contributes to the pathology of NAFLD and is associated with an altered lipid profile. However, the lipid pattern does not appear to be specific for lipophagic alterations, as it resembles mainly that described in relation to fatty liver disease.


Assuntos
Ácidos Graxos Ômega-3 , Hepatopatia Gordurosa não Alcoólica , Animais , Autofagia , Ácidos Graxos/metabolismo , Ácidos Graxos Ômega-3/metabolismo , Humanos , Metabolismo dos Lipídeos , Fígado/metabolismo , Camundongos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fosfatidilcolinas/metabolismo , Fosfolipídeos/metabolismo , Triglicerídeos/metabolismo
11.
Mol Metab ; 65: 101585, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36055578

RESUMO

OBJECTIVE: Sorting-related receptor with type A repeats (SORLA) is a neuronal sorting receptor that prevents accumulation of amyloid-beta peptides, the main constituent of senile plaques in Alzheimer disease. Recent transcriptomic studies show that SORLA transcripts are also found in beta cells of pancreatic islets, yet the role of SORLA in islets is unknown. Based on its protective role in reducing the amyloid burden in the brain, we hypothesized that SORLA has a similar function in the pancreas via regulation of amyloid formation from islet amyloid polypeptide (IAPP). METHODS: We generated human IAPP transgenic mice lacking SORLA (hIAPP:SORLA KO) to assess the consequences of receptor deficiency for islet histopathology and function in vivo. Using both primary islet cells and cell lines, we further investigated the molecular mechanisms whereby SORLA controls the cellular metabolism and accumulation of IAPP. RESULTS: Loss of SORLA activity in hIAPP:SORLA KO resulted in a significant increase in islet amyloid deposits and associated islet cell death compared to hIAPP:SORLA WT animals. Aggravated islet amyloid deposition was observed in mice fed a normal chow diet, not requiring high-fat diet feeding typically needed to induce islet amyloidosis in mouse models. In vitro studies showed that SORLA binds to and mediates the endocytic uptake of proIAPP, but not mature IAPP, delivering the propeptide to an endolysosomal fate. CONCLUSIONS: SORLA functions as a proIAPP-specific clearance receptor, protecting against islet amyloid deposition and associated cell death caused by IAPP.


Assuntos
Amiloidose , Células Secretoras de Insulina , Ilhotas Pancreáticas , Amiloide/genética , Amiloide/metabolismo , Amiloidose/metabolismo , Amiloidose/patologia , Animais , Humanos , Células Secretoras de Insulina/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas/genética , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/metabolismo , Proteínas de Membrana Transportadoras/deficiência , Proteínas de Membrana Transportadoras/genética , Camundongos , Camundongos Transgênicos , Receptores de LDL/deficiência , Receptores de LDL/genética
12.
Hum Mol Genet ; 31(23): 4019-4033, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-35796564

RESUMO

To nominate novel disease genes for obesity and type 2 diabetes (T2D), we recently generated two mouse backcross populations of the T2D-susceptible New Zealand Obese (NZO/HI) mouse strain and two genetically different, lean and T2D-resistant strains, 129P2/OlaHsd and C3HeB/FeJ. Comparative linkage analysis of our two female backcross populations identified seven novel body fat-associated quantitative trait loci (QTL). Only the locus Nbw14 (NZO body weight on chromosome 14) showed linkage to obesity-related traits in both backcross populations, indicating that the causal gene variant is likely specific for the NZO strain as NZO allele carriers in both crosses displayed elevated body weight and fat mass. To identify candidate genes for Nbw14, we used a combined approach of gene expression and haplotype analysis to filter for NZO-specific gene variants in gonadal white adipose tissue, defined as the main QTL-target tissue. Only two genes, Arl11 and Sgcg, fulfilled our candidate criteria. In addition, expression QTL analysis revealed cis-signals for both genes within the Nbw14 locus. Moreover, retroviral overexpression of Sgcg in 3T3-L1 adipocytes resulted in increased insulin-stimulated glucose uptake. In humans, mRNA levels of SGCG correlated with body mass index and body fat mass exclusively in diabetic subjects, suggesting that SGCG may present a novel marker for metabolically unhealthy obesity. In conclusion, our comparative-cross analysis could substantially improve the mapping resolution of the obesity locus Nbw14. Future studies will throw light on the mechanism by which Sgcg may protect from the development of obesity.


Assuntos
Diabetes Mellitus Tipo 2 , Camundongos , Humanos , Feminino , Animais , Diabetes Mellitus Tipo 2/genética , Mapeamento Cromossômico , Genes Modificadores , Obesidade/genética , Obesidade/metabolismo , Peso Corporal/genética , Camundongos Endogâmicos , Genômica , Fatores de Ribosilação do ADP/genética , Sarcoglicanas/metabolismo
14.
Diabetes ; 71(9): 1962-1978, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35771990

RESUMO

Progressive dysfunction and failure of insulin-releasing ß-cells are a hallmark of type 2 diabetes (T2D). To study mechanisms of ß-cell loss in T2D, we performed islet single-cell RNA sequencing of two obese mouse strains differing in their diabetes susceptibility. With mice on a control diet, we identified six ß-cell clusters with similar abundance in both strains. However, after feeding of a diabetogenic diet for 2 days, ß-cell cluster composition markedly differed between strains. Islets of diabetes-resistant mice developed into a protective ß-cell cluster (Beta4), whereas those of diabetes-prone mice progressed toward stress-related clusters with a strikingly different expression pattern. Interestingly, the protective cluster showed indications of reduced ß-cell identity, such as downregulation of GLUT2, GLP1R, and MafA, and in vitro knockdown of GLUT2 in ß-cells-mimicking its phenotype-decreased stress response and apoptosis. This might explain enhanced ß-cell survival of diabetes-resistant islets. In contrast, ß-cells of diabetes-prone mice responded with expression changes indicating metabolic pressure and endoplasmic reticulum stress, presumably leading to later ß-cell loss. In conclusion, failure of diabetes-prone mice to adapt gene expression toward a more dedifferentiated state in response to rising blood glucose levels leads to ß-cell failure and diabetes development.


Assuntos
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Ilhotas Pancreáticas , Animais , Apoptose/genética , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Suscetibilidade a Doenças/metabolismo , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Camundongos , Camundongos Obesos
15.
Front Med (Lausanne) ; 9: 875430, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35646955

RESUMO

Advanced age, followed by male sex, by far poses the greatest risk for severe COVID-19. An unresolved question is the extent to which modifiable comorbidities increase the risk of COVID-19-related mortality among younger patients, in whom COVID-19-related hospitalization strongly increased in 2021. A total of 3,163 patients with SARS-COV-2 diagnosis in the Lean European Open Survey on SARS-CoV-2-Infected Patients (LEOSS) cohort were studied. LEOSS is a European non-interventional multi-center cohort study established in March 2020 to investigate the epidemiology and clinical course of SARS-CoV-2 infection. Data from hospitalized patients and those who received ambulatory care, with a positive SARS-CoV-2 test, were included in the study. An additive effect of obesity, diabetes and hypertension on the risk of mortality was observed, which was particularly strong in young and middle-aged patients. Compared to young and middle-aged (18-55 years) patients without obesity, diabetes and hypertension (non-obese and metabolically healthy; n = 593), young and middle-aged adult patients with all three risk parameters (obese and metabolically unhealthy; n = 31) had a similar adjusted increased risk of mortality [OR 7.42 (95% CI 1.55-27.3)] as older (56-75 years) non-obese and metabolically healthy patients [n = 339; OR 8.21 (95% CI 4.10-18.3)]. Furthermore, increased CRP levels explained part of the elevated risk of COVID-19-related mortality with age, specifically in the absence of obesity and impaired metabolic health. In conclusion, the modifiable risk factors obesity, diabetes and hypertension increase the risk of COVID-19-related mortality in young and middle-aged patients to the level of risk observed in advanced age.

16.
Artigo em Inglês | MEDLINE | ID: mdl-35367353

RESUMO

Changes in intracellular CoA levels are known to contribute to the development of non-alcoholic fatty liver disease (NAFLD) in type 2 diabetes (T2D) in human and rodents. However, the underlying genetic basis is still poorly understood. Due to their diverse susceptibility towards metabolic diseases, mouse inbred strains have been proven to serve as powerful tools for the identification of novel genetic factors that underlie the pathophysiology of NAFLD and diabetes. Transcriptome analysis of mouse liver samples revealed the nucleoside diphosphate linked moiety X-type motif Nudt19 as novel candidate gene responsible for NAFLD and T2D development. Knockdown (KD) of Nudt19 increased mitochondrial and glycolytic ATP production rates in Hepa 1-6 cells by 41% and 10%, respectively. The enforced utilization of glutamine or fatty acids as energy substrate reduced uncoupled respiration by 41% and 47%, respectively, in non-target (NT) siRNA transfected cells. This reduction was prevented upon Nudt19 KD. Furthermore, incubation with palmitate or oleate respectively increased mitochondrial ATP production by 31% and 20%, and uncoupled respiration by 23% and 30% in Nudt19 KD cells, but not in NT cells. The enhanced fatty acid oxidation in Nudt19 KD cells was accompanied by a 1.3-fold increased abundance of Pdk4. This study is the first to describe Nudt19 as regulator of hepatic lipid metabolism and potential mediator of NAFLD and T2D development.


Assuntos
Diabetes Mellitus Tipo 2 , Hepatopatia Gordurosa não Alcoólica , Pirofosfatases , Animais , Camundongos , Trifosfato de Adenosina/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Hepatócitos/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Pirofosfatases/metabolismo
17.
Int J Mol Sci ; 23(6)2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35328627

RESUMO

Current attempts to prevent and manage type 2 diabetes have been moderately effective, and a better understanding of the molecular roots of this complex disease is important to develop more successful and precise treatment options. Recently, we initiated the collective diabetes cross, where four mouse inbred strains differing in their diabetes susceptibility were crossed with the obese and diabetes-prone NZO strain and identified the quantitative trait loci (QTL) Nidd13/NZO, a genomic region on chromosome 13 that correlates with hyperglycemia in NZO allele carriers compared to B6 controls. Subsequent analysis of the critical region, harboring 644 genes, included expression studies in pancreatic islets of congenic Nidd13/NZO mice, integration of single-cell data from parental NZO and B6 islets as well as haplotype analysis. Finally, of the five genes (Acot12, S100z, Ankrd55, Rnf180, and Iqgap2) within the polymorphic haplotype block that are differently expressed in islets of B6 compared to NZO mice, we identified the calcium-binding protein S100z gene to affect islet cell proliferation as well as apoptosis when overexpressed in MIN6 cells. In summary, we define S100z as the most striking gene to be causal for the diabetes QTL Nidd13/NZO by affecting ß-cell proliferation and apoptosis. Thus, S100z is an entirely novel diabetes gene regulating islet cell function.


Assuntos
Diabetes Mellitus Tipo 2 , Hiperglicemia , Animais , Diabetes Mellitus Tipo 2/genética , Genótipo , Hiperglicemia/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Locos de Características Quantitativas
18.
BMJ Open ; 12(2): e058268, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35168986

RESUMO

INTRODUCTION: Even well-treated gestational diabetes mellitus (GDM) might still have impact on long-term health of the mother and her offspring, although this relationship has not yet been conclusively studied. Using in-depth phenotyping of the mother and her offspring, we aim to elucidate the relationship of maternal hyperglycaemia during pregnancy and adequate treatment, and its impact on the long-term health of both mother and child. METHODS: The multicentre PREG study, a prospective cohort study, is designed to metabolically and phenotypically characterise women with a 75-g five-point oral glucose tolerance test (OGTT) during, and repeatedly after pregnancy. Outcome measures are maternal glycaemia during OGTTs, birth outcome and the health and growth development of the offspring. The children of the study participants are followed up until adulthood with developmental tests and metabolic and epigenetic phenotyping in the PREG Offspring study. A total of 800 women (600 with GDM, 200 controls) will be recruited. ETHICS AND DISSEMINATION: The study protocol has been approved by all local ethics committees. Results will be disseminated via conference presentations and peer-reviewed publications. TRIAL REGISTRATION NUMBER: The PREG study and the PREG Offspring study are registered with Clinical Trials (ClinicalTrials.gov identifiers: NCT04270578, NCT04722900).


Assuntos
Diabetes Gestacional , Adulto , Glicemia/metabolismo , Criança , Diabetes Gestacional/terapia , Feminino , Teste de Tolerância a Glucose , Humanos , Masculino , Mães , Gravidez , Estudos Prospectivos
19.
Int J Mol Sci ; 23(4)2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35216219

RESUMO

Pancreatic steatosis associates with ß-cell failure and may participate in the development of type-2-diabetes. Our previous studies have shown that diabetes-susceptible mice accumulate more adipocytes in the pancreas than diabetes-resistant mice. In addition, we have demonstrated that the co-culture of pancreatic islets and adipocytes affect insulin secretion. The aim of this current study was to elucidate if and to what extent pancreas-resident mesenchymal stromal cells (MSCs) with adipogenic progenitor potential differ from the corresponding stromal-type cells of the inguinal white adipose tissue (iWAT). miRNA (miRNome) and mRNA expression (transcriptome) analyses of MSCs isolated by flow cytometry of both tissues revealed 121 differentially expressed miRNAs and 1227 differentially expressed genes (DEGs). Target prediction analysis estimated 510 DEGs to be regulated by 58 differentially expressed miRNAs. Pathway analyses of DEGs and miRNA target genes showed unique transcriptional and miRNA signatures in pancreas (pMSCs) and iWAT MSCs (iwatMSCs), for instance fibrogenic and adipogenic differentiation, respectively. Accordingly, iwatMSCs revealed a higher adipogenic lineage commitment, whereas pMSCs showed an elevated fibrogenesis. As a low degree of adipogenesis was also observed in pMSCs of diabetes-susceptible mice, we conclude that the development of pancreatic steatosis has to be induced by other factors not related to cell-autonomous transcriptomic changes and miRNA-based signals.


Assuntos
Adipogenia/fisiologia , Tecido Adiposo Branco/fisiologia , Diferenciação Celular/fisiologia , Células-Tronco Mesenquimais/fisiologia , Pâncreas/fisiologia , Adipócitos/fisiologia , Adipogenia/genética , Animais , Células da Medula Óssea/fisiologia , Diferenciação Celular/genética , Proliferação de Células/genética , Proliferação de Células/fisiologia , Perfilação da Expressão Gênica/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Células Estromais/fisiologia , Transcriptoma/genética
20.
Int J Obes (Lond) ; 46(2): 307-315, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34689180

RESUMO

BACKGROUND: The Berlin Fat Mouse Inbred line (BFMI) is a model for obesity and the metabolic syndrome. This study aimed to identify genetic variants associated with impaired glucose metabolism using the obese lines BFMI861-S1 and BFMI861-S2, which are genetically closely related, but differ in several traits. BFMI861-S1 is insulin resistant and stores ectopic fat in the liver, whereas BFMI861-S2 is insulin sensitive. METHODS: In generation 10, 397 males of an advanced intercross line (AIL) BFMI861-S1 × BFMI861-S2 were challenged with a high-fat, high-carbohydrate diet and phenotyped over 25 weeks. QTL-analysis was performed after selective genotyping of 200 mice using the GigaMUGA Genotyping Array. Additional 197 males were genotyped for 7 top SNPs in QTL regions. For the prioritization of positional candidate genes whole genome sequencing and gene expression data of the parental lines were used. RESULTS: Overlapping QTL for gonadal adipose tissue weight and blood glucose concentration were detected on chromosome (Chr) 3 (95.8-100.1 Mb), and for gonadal adipose tissue weight, liver weight, and blood glucose concentration on Chr 17 (9.5-26.1 Mb). Causal modeling suggested for Chr 3-QTL direct effects on adipose tissue weight, but indirect effects on blood glucose concentration. Direct effects on adipose tissue weight, liver weight, and blood glucose concentration were suggested for Chr 17-QTL. Prioritized positional candidate genes for the identified QTL were Notch2 and Fmo5 (Chr 3) and Plg and Acat2 (Chr 17). Two additional QTL were detected for gonadal adipose tissue weight on Chr 15 (67.9-74.6 Mb) and for body weight on Chr 16 (3.9-21.4 Mb). CONCLUSIONS: QTL mapping together with a detailed prioritization approach allowed us to identify candidate genes associated with traits of the metabolic syndrome. In addition, we provided evidence for direct and indirect genetic effects on blood glucose concentration in the insulin-resistant mouse line BFMI861-S1.


Assuntos
Obesidade/dietoterapia , Locos de Características Quantitativas/genética , Animais , Carboidratos/efeitos adversos , Mapeamento Cromossômico/métodos , Mapeamento Cromossômico/estatística & dados numéricos , Dieta Hiperlipídica/efeitos adversos , Dieta Hiperlipídica/estatística & dados numéricos , Modelos Animais de Doenças , Camundongos , Obesidade/metabolismo , Obesidade/fisiopatologia , Locos de Características Quantitativas/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...